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ABSTRACT : The ratio of products formed in the photochemistry of cis- and trans-2,3-dimethyl- 
cyclobutanone in alcohols is found to be wavelength and temperature dependent. 

INTRODUCTION. The photochemistry of cyclobutanones in solution is dominated by a single pri- 

mary photochemical process: 
1 

a-cleavage. In general, this process occurs from the S 
l( n,x*) 

state and leads to a singlet diradical that proceeds to products via (a) decarbonylation, 

which leads to cyclopropane products, (b) cycloelimination, which leads to an ethylene and a 

ketene and (c) ring expansion, which leads to an oxacarbene, that is usually trapped by alco- 

hols as a tetrahydrofuranyl ether. In general, the stereospecificity of products produced by 

each reaction is very high (>95%).2 We find that 2,3-dimethylcyclobutanone differs from the 

typical pattern in that the stereospecificity of cyclopropane formation is relatively low. We 

report here a study of the products formed from the photolysis of 2,3-dimethylcyclobutanone, 

as well as the variation in products as a function of temperature and wavelength. 

RESULTS. Irradiation of cis or trans-2,3-dimethylcyclobutanone (c-1 and t-1) in isopropanol or 

t-butanol results in the products shown in Scheme I. Information relevant to the relative pro- 

duct yields and percentage stereospecificity are listed in Table 1 (wavelength effects at 2S°C 

in t-butanol solvent) and Table 2 (temperature effects with 313 nm excitation in isopropanol). 

DISCUSSION. Products. Like other cyclobutanones in alcohol solvents,3(a) ,1_ yields products 

expected from an initial primary process of a-cleavage that generates a diradical which parti- 

tions to products via decarbonylation (path a), cycloelimination (path b) or ring expansion by 

cyclization to an oxacarbene (which is trapped by alcohols, path c). 3 (b) A fourth pathway, 

cyclisation to regenerate the starting ketone (path d) has been invoked to explain the obser- 

vation that quantum yields for product formation are less than unity, although it appears that 

the primary photochemical process of a-cleavage occurs with unit efficiency.' At low conver- 

sions (45%) we were unable to detect significant interconversion of t-l and c-l during photol- - - 

ysis, so we conclude that either path d is insignificant under our conditions or, more likely, 

that path d occurs from a singlet diradical with essentially complete retention of stereochem- 

istry. Although the types of products produced from photolysis of 1 are completely analogous 

to those observed from photolysis of many other alkyl cyclobutanones, the stereospecificity of 

products (values in parentheses in Table 1 and 2) and the regiospecificity of cycloelimination 

(ratio of path (b)-1 to path (b)-2 in Table 1) are in several cases much lower than expected 

from previous reports. 
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Table 1. Wavelensth Effect on Product Yields and Stereospecificity.a 

Process cis-2,3-dimethylcyclobutanone trans-2,3-dimethylcyclobutanone 

254 nm 313 nm 254 nm 313 nm 

Decarbonylation: Path (a) 13(66) 8(60) 18(88) ll(98) 

Cycloelimination: Path 50(88) 40(94) 55(94) 43(99) 
(b)-1 

Ring Expansion: Path (c) 37(92) 52(94) 27(95) 46(9S) 

Ratio of path (b)-1 to 2.5 14 2.6 7.5 
(b)-2 

(a) The first number in the table is the relative yield of product based on cyclobutanone 
reacted. The overall product yield is nearly quantitative. Temperature 25'C, solvent 

t-butanol. 

Table 2. Temperature Effects on Product Yields and Stereospecificity.a 
-- 

Process cis-2,3-dimethylcyclobutanone trans-2,3-dimethylcyclobutanone 

25OC -78OC -198'C 25OC -18V -198“C 

Decarbonylation: Path (a) 8(60) 3(44) 6(42) 12(95) 4(89) 7(95) 

Cycloelimination: Path 44(95) 16(97) 58(88) 45(98) 17(99) 38(98) 

(b)-1 

-T 

Ping Expansion: Path (c) 44(92) 81(95) 36(60) 43(98) 79(99) 55(45) 

..- _. . . . . . _.~. z_ LL_ .._._L1___ __1_1> _r ___>___L L___> ^_ ____,^L._*__-*.. 
(a) Tne first numner In tne wale IS r;ne y~rr;l UL yrvuuur L)LIDIU w G~GLUUULCUW~~~ 

reacted. The overall product yield is nearly quantitative. Excitation wavelength 313 nm, 
solvent isopropanol. 

Scheme I. 
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Stereospecificity as a function of excitation wavelength at 25O. At 25O and with 313 nm 

photoexcitation in t-butanol solvent, the stereospecificity of both cycloelimination and ring 

expansion (paths b and c) is high (=94%), as is the stereospecificity of decarbonylation (path 

c) for r-1 (98%). On the other hand, for c-l, the products of decarbonylation, display only - 

modest stereospecificity (60%). Decrease in the excitation wavelength (313 nm -t 254 nm) gen- 

erally causes a small decrease in stereospecificity of product formation, with the exception 

again-of path (a) for c-l which displays a modest increase in stereospecificity. - 

The generally high stereospecificity of product formation is consistent with c-cleavage 

from S1 followed by formation of products faster than rotation about bonds in a singlet 1,4- 

diradical intermediate. The low stereospecificity toward path (a) observed from c-l is cons&- - 

tent with leakage of S1 to T1 followed by selective decarbonylation of a triplet 1,4-diradical 

intermediate for which bond rotations compete with cyclisation. 
4 

Regiospecificity as a function of excitation wavelength. The ratio of 2-butenes to propene 

provides a measure of regiospecificity of overall cycloelimination, the latter alkene 

resulting from a-cleavage of the less substituted a carbon-CO bond. At 25' with 313 

nm excitation, both c-1 and g-1 undergo predominate cleavage of the more substituted a-car- 

bon-CO bond (path b-l). Decrease in the excitation wavelength (313 nm + 254 nm) causes a Sub- 

stantial decrease in regiospecificity. These results are consistent with an excess energy 

effect on the c-cleavage step. It is noted that the yield of cyclisation also decreases with 

increase in excitation energy, a result which is interpretable as an excess energy effect on 

the partitioning of the intermediate diradical to products. 

Product ratios and stereospecificity as a function of temperature. When the excitation wave- 

length is maintained at 313 run, the effect of temperature on the reaction stereospecificity is 

minor. Isopropanol was employed as solvent for the temperature studies. From Table 2 it is 

noted that lowering of the temperature from 25OC to -78'C (solvent still liquid) increases the 

yield of cyclization product at the expense of cycloelimination and decarbonylation products. 

The stereospecificity of path (b)-1 and path (c) is not significantly influenced whereas the 

stereospecificity of path (a) displays a modest decrease by this temperature variation. At 

-196'C (solid isopropanol solvent) the relative yield of cyclization products is significantly 

lower than that found at -78'C. This result may be interpreted to result from the lower sca- 

venging efficiency of carbene by isopropanol under these conditions. As a result, an equili- 

brium between the oxacarbene and 1,4-diradical may occur and cause a lower net yield of 

acetals. This interpretation is consistent with the rather substantial decrease in stereo- 

specificity of ring expansion products upon going from -78V to -198Oc. 

coNcLUsIoN. Both g-1 and c-1 undergo conven&onal photoreactions resulting from a-cleavage in 

t-butanol and isopropanol. The product ratios observed in fluid solution as a function of 

temperature and excitation wavelength are consistent with the occurrence of initiation of de- 

carbonylation and cycloelimination from upper vibrational levels, whereas ring expansion is 

favored in lower vibrational levels (i.e., the yield of the latter is optimized at low temp- 

erature and long wavelengths). Some leakage from S1 to T1 evidentally occurs from lower vibra- 

tional levels. The regiospecificity of a-cleavage in fluid solution is shown to be wavelength 
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dependent at 25OC. The stereospecificities of path (b) and (c) are high for both g-1 and c-1 

under most conditions studied. However, for c-1, path (a) displays poor stereospecificity. 

In an isopropanol glass ring expansion is suppressed and displays low stereospecificity, a re- 

sult consistent with reversibility of oxacarbene formation for a 1,4-diradical precursor. 
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